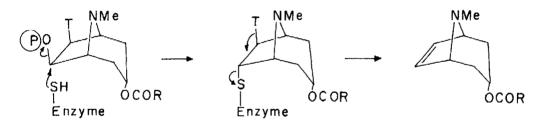

LOSS OF TRITIUM DURING THE BIOSYNTHESIS OF METELOIDINE AND SCOPOLAMINE FROM [N-<u>METHYL</u>-¹⁴C, 6β,7β-³H₂]TROPINE Edward Leete and Donald H. Lucast Natural Products Laboratory¹, School of Chemistry, University of Minnesota, Minneapolis, MN 55455 (Received in USA 14 July 1976; received in UK for publication 9 August 1976)

We have previously established² that tropine (1) is a precursor of meteloidine (3), hydroxylation of the tropine molety apparently occurring after the formation of its tigloyl ester $(2)^{3,4}$. It is also known that hyoscyamine (4), the tropic acid ester of tropine, is a precursor of scopolamine (6), and early


work with non-radioactive substrates favored the formation of the epoxide via 6β -hydroxyhyoscyamine (5) and 6,7-dehydrohyoscyamine (7)⁵. We have now examined the stereochemical course of these oxidations of tropine by feeding to Datura species $[6\beta, 7\beta^{-3}H_{2}]$ tropine, which was prepared by the following method. Scopolamine was converted to 6,7-dehydrohyoscyamine by Sharpless's method⁶: n-Butyl lithium (35.7 mmol, 2.1M in hexane) was added with rapid stirring to a suspension of WCl₆ (5.48 g, 13.8 mmol) in THF (40 ml) at -78° under $N_{\rm p}$. After 5 minutes the reaction mixture was allowed to warm to 20°, and a solution of scopolamine (3.9 mmol) in THF (10 ml) added during 5 minutes. After stirring for 30 minutes the reaction mixture was added to H_2O (150 ml) containing NaOH (5M) and sodium potassium tartrate (1M). The solution was extracted with $CHCl_3$, dried (Na₂SO₄), and evaporated to yield (7) as a pale yellow oil (870 mg, 3.03 mmol), having a mass spectrum, m/e 287.1539, calc. for C₁₇H₂₁NO₃: 287.1521; 138.0927 (M-tropic acid moiety), calc. for $C_{8}H_{12}N0$: 138.0918. Hydrogenation in ethyl acetate with D_2 in the presence of 10% Pd/C afforded hyoscyamine. Hydrolysis of this deuterated material yielded tropine which was oxidized to tropinone. The ¹H-NMR spectrum of this compound indicated that the deuterium was located in the 6 β and 7 β (exo) positions⁷. Hydrogenation of (7) with tritium under the same conditions thus afforded $[6\beta,7\beta]$ - ${}^{3}\text{H}_{2}$]hyoscyamine which on hydrolysis yielded [6 β ,7 β - ${}^{3}\text{H}_{2}$]tropine, having the same specific activity, indicating that all the tritium was in the tropine moiety $\frac{8}{8}$. This $[^{3}\text{H}]$ tropine was mixed with [N-methyl- 14 C]tropine² yielding material having a $^{3}\text{H}/^{14}$ C ratio of 7.3. Further confirmation of the location of the tritium was obtained by oxidizing this doubly labeled material with CrO_3 in sulfuric acid⁹, when N-methylsuccinimide $({}^{3}\mathrm{H}/{}^{14}\mathrm{C} = 7.2)$ was obtained.

The $[N-\underline{methyl}-^{14}C, 6\beta, 7\beta-^{3}H_{2}]$ tropine was fed to <u>Datura innoxia</u> and <u>D. meteloides</u> by the wick method for 7 days, and the alkaloids isolated as previously described². Their activities are recorded in the Table. As expected, the hyoscyamine and reisolated tropine had ³H/¹⁴C ratios essentially the same as the administered tropine. However the meteloidine and scopolamine retained only small amounts of tritium. Thus the di-hydroxylation of the tropine molety of (2) proceeds with retention of configuration. This result is typical of direct hydroxylations at saturated

	Table	
	<u>Datura innoxia</u>	<u>Datura</u> <u>meteloides</u>
[N- <u>methyl</u> - ¹⁴ C, 6β,7β- ³ H ₂]Tropine Amount fed Specific activity [*] 3 _H /14 _C	0.5 mm ol 5.63 x 10 ⁷ 7.3	0.5 mm ol 5.63 x 10 ⁷ 7.3
Fresh weight of plants (g)	587	1200
Hyoscyamine Weight (mg) * Specific activity Specific incorporation (%) 3H/14C	123 3.22 x 10 ⁵ 0.57 6.3	43 1.74 x 10 ⁴ 0.031 7.7
Scopolamine Weight (mg) Specific activity Specific incorporation (%) 3H/14C	66 1.04 x 10 ⁵ 0.18 0.3	133 1.72 x 10 ⁴ 0.030 0.5
Meteloidine Weight (mg) Specific activity Specific incorporation (%) 3 _H /14 _C	53 1.09 x 10 ⁵ 0.19 0.4	64 3.4 x 10 ⁵ 0.60 <0.1
Tropine Weight (mg) Specific activity Specific incorporation 3H/14C	not isolated	3.5 1.47 x 10 ⁷ 26.1 7.5

* 14c activity, dpm/mmol.

carbon $atoms^{10}$. If the previous work⁵ on the biosynthesis of scopolamine is accepted, the present results indicate that the formation of 6,7-dehydrohyoscyamine from 6 β -hydroxyhyoscyamine involves a <u>cis</u>-dehydration. Olefin formation catalyzed by dehydratases usually involve the <u>trans</u> removal of the elements of water¹¹, however some <u>cis</u>-dehydrations have been observed in Nature, for example the formation of 5-dehydroshikimic acid from 5-dehydroquinic acid¹². The dehydration could of course proceed by a two step mechanism as illustrated below:

This investigation was supported by a research grant GM-13246 from the National Institutes of Health, U. S. Public Health Service.

References and Notes

1. Contribution No. 145 from this Laboratory.

2. E. Leete, Phytochemistry, 11, 1713 (1972).

3. E. Leete and D. H. Lucast, Phytochemistry, 14, 2199 (1975).

4. P. J. Beresford and J. G. Woolley, <u>Phytochemistry</u>, 1^h/₂, 2209 (1975).

- 5. A. Romeike, <u>Flora</u>, <u>143</u>, 67 (1956); <u>148</u>, 306 (1959); <u>Naturwissenschaften</u>, <u>49</u>, 281 (1962); <u>G. Fodor</u>, A. Romeike, <u>G. Janzsó</u>, and I. Koczor, <u>Tetrahedron Letters</u>, No. 7, 19 (1959); A. Romeike and <u>G. Fodor</u>, <u>Tetrahedron Letters</u>, No. 22, 1 (1960).
- 6. K. B. Sharpless, M. A. Umbriet, M. T. Nieh, and T. C. Flood, J. Am. Chem. Soc., 94, 6538 (1972). This deoxygenation is remarkable considering the presence of the other functional groups in scopolamine. We found this method superior to other methods which have been used for the preparation of 6,7-dehydrotropines: N. A. Preobashenski, J. A. Rubtsov, T. F. Dankova, and V. P. Pavlov, <u>Zh. Obshch. Khim.</u>, 15, 952 (1945); P. Dobó, G. Fodor, G. Janzsó, I. Koczor, J. Toth, and I. Vincze, <u>J. Chem. Soc.</u>, 3461 (1959); G. Fierz, R. Chidgey, and H. M. R. Hoffmann, <u>Angew. Chem. Int. Ed.</u>, 13, 410 (1974); R. Noyori, Y. Baba, and Y. Hayakawa, <u>J. Am. Chem. Soc</u>., 96, 3336 (1974). We failed to obtain 6,7-dehydrotropinone from teloidinone (6β,7β-dihydroxy-3-oxotropane) using either the methods of J. S. Josan and F. W. Eastwood, <u>Aust. J. Chem</u>., 21, 2013 (1968), or E. J. Corey and R. A. E. Winter, <u>J. Am. Chem. Soc</u>., 85, 2677 (1963).
- 7. M. Ohashi, I. Morishima, K. Okada, and T. Yonezawa, <u>J. Chem. Soc., Chem.</u> <u>Comm.</u>, 34 (1971).
- [6,7-³H₂]Tropine in which the tritium was both <u>exo</u> and <u>endo</u> has been prepared from [2,3-³H₂]succindialdehyde by Robinson's method: W. Hespe, W. J. F. Klopper, and W. Th. Nauta, <u>Recl. Trav. Chim. Pays-Bas</u>, <u>84</u>, 476 (1965).
- 9. E. Leete, L. Marion, and I. D. Spenser, <u>Can. J. Chem</u>., <u>32</u>, 1116 (1954).
- 10. R. Bentley in 'Molecular Asymmetry in Biology', Vol. 2, p. 259, 274 (1970), Academic Press.
- 11. Reference 10, p. 127.
- 12. K. R. Hanson and I. R. A. Rose, <u>Proc. Natl. Acad. Sci. U.S.A.</u>, <u>50</u>, 981 (1963); J. R. Butler, W. L. Alworth, and M. J. Nugent, <u>J. Am. Chem. Soc.</u>, <u>96</u>, 1617 (1974).